Evolution of structural and optical properties of nanostructured silicon carbon films deposited by plasma enhanced chemical vapour deposition
详细信息查看全文 | 推荐本文 |
摘要
Nanostructured silicon carbon films composed of silicon nanocrystallites embedded in hydrogenated amorphous silicon carbon matrix have been deposited by plasma enhanced chemical vapour deposition technique using silane and methane gas mixture highly diluted in hydrogen. The structural and optical properties of the films have been investigated by X-ray diffraction, Raman, Fourier transform infrared, ultra violet-visible-near infrared and photoluminescence spectroscopies while the composition of the films has been obtained from nuclear techniques. The study has demonstrated that the structure of the films evolves from microcrystalline to nanocrystalline phase with the increase in radio frequency (rf) power. Further, it is shown that with increasing the rf power the size of silicon nanocrystallites decreases while the optical gap increases and a blueshift of visible room temperature photoluminescence peak can be observed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700