Naphthalene-based periodic nanoporous organosilicas: I. Synthesis and structural characterization
详细信息查看全文 | 推荐本文 |
摘要
Novel periodic nanoporous organosilicas (PNOs) were synthesized by direct co-condensation of tetraethylorthosilicate and of the prior synthesized compound triethoxy(naphthalen-1-yl)silane. Structural characterization of materials was performed with various techniques such as 1H and 13C nuclear magnetic resonance, X-ray powder diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible and photoluminescence emission and excitation spectroscopy, differential thermal and thermo-gravimetric analyses, nitrogen porosimetry and helium pycnometry. Naphthalene-based moieties were grafted on the silicate matrix through oxygen bonds resulted to novel organosilicate final materials that exhibited high naphthalene content up to 17 wt.%with a corresponding 1.33 mmol/g molar concentration, high crystallinity, specific surface area larger than 1000 m2/g and pore size distributions in the microporous/mesoporous boundary. Optical properties have been found to be comparable to the naphthalene. The attachment of the optically active part to the mesopores walls and its specific tuning for blue/UV luminescence demonstrates that this type of the reported low cost materials can be considered as phosphors in UV Leds. Tuning by using the red shift of similar larger molecules, all simultaneously trapped within the PNO, may prove to be efficient white light phosphor. Moreover, the nonlinear active properties of the active naphthalene may also allow for novel applications. Finally, materials were studied for hydrogen and methane storage with Sieverts鈥?apparatus and demonstrated high H2 and CH4 weight proportions for PNOs materials at various temperatures up to 4.3 MPa and 3.5 MPa respectively as presented in part II.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700