Evolution of liquid holdup profile in a standing protein stabilized foam
详细信息查看全文 | 推荐本文 |
摘要
Evolution of liquid holdup profile in a standing foam formed by whipping and stabilized by sodium caseinate in the presence of xanthan gum when subjected to 16 and 29g centrifugal force fields was measured using magnetic resonance imaging for different pH, ionic strength, protein and xanthan gum concentrations. Drainage resulted in the formation of a separate liquid layer at the bottom at longer times. Foam drainage was slowest at pH 7, lower ionic strength, higher protein and gum concentrations. Foam was found to be most stable at pH 5.1 near the isoelectric point of protein, lower ionic strength and higher protein and xanthan gum concentrations. A predicted equilibrium liquid holdup profile based on a previous model (G. Narsimhan, J. Food Eng. 14 (1991) 139) agreed well with experimental values at sufficiently long times. A proposed model for velocity of drainage of a power law fluid in a Plateau border for two different simplified geometries was incorporated in a previously developed model for foam drainage (G. Narsimhan, J. Food Eng. 14 (1991) 139) to predict the evolution of liquid holdup profiles. The model predictions for simplified circular geometry of Plateau border compared well with the experimental data of liquid holdup profiles at small times. At longer times, however, the predicted liquid holdup profile was larger than the observed, this discrepancy being due to coarsening of bubble size and decrease in foam height not accounted for in the model. A Newtonian model for foam drainage under predicted drainage rates did not agree with the experimental data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700