Understanding the creep behavior of a 2.5D Cf–SiC composite: II. Experimental specifications and macroscopic mechanical creep responses
详细信息查看全文 | 推荐本文 |
摘要
Macroscopic results for a 2.5D Cf–SiC composite creep tested in tension are presented. After the development and the optimization of a new accurate high temperature tensile device, tests were conducted in argon, under a reduced pressure, for stresses ranging from 110 to 220 MPa and temperatures between 1273 and 1673 K. The macroscopic mechanical creep responses of the composite were analyzed and interpreted. Since ceramic matrix composites (CMCs) contain constituents of a different nature, with an influence of a structural aspect, it is not possible to apply the hypotheses of homogeneity and isotropy as described in Dorn’s theory. Consequently, the physical meaning of the mechanical parameters, obtained by such a classical treatment, is limited. It is then necessary to discuss the global creep responses using an approach based on damage mechanics, which is more consistent with the specific features of the CMCs. This new approach adopted here reveals less classical parameters to be more accurate indicators of the creep behavior and the strain mechanisms of the 2.5D Cf–SiC composite.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700