Neural differentiation of umbilical cord mesenchymal stem cells by sub-sonic vibration
详细信息查看全文 | 推荐本文 |
摘要

Aims

Adult stem cells, such as umbilical cord-derived mesenchymal stem cells (UC-MSCs), have the potential to differentiate into various types of cells, including neurons. Research has shown that mechanical stimulation induces a response in MSCs, specifically, low and high intensity sub-sonic vibration (SSV) has been shown to facilitate wound healing. In this study, the effects of SSV were examined by assessing the proliferation and differentiation properties of MSCs.

Main methods

hUC-MSCs were isolated from Wharton's jelly, including the smooth muscle layer of the umbilical cord. During subculture, the cells were passaged every 5-6 days using nonhematopoietic stem cell media. To measure the effect of sonic vibration, SSV was applied to these cells continuously for 5 days.

Key findings

In this study, the morphology of hUC-MSCs was altered to resemble neurons by SSV. Further, the mRNA and protein levels of neuron-specific markers, including MAP2, NF-L, and NeuroD1, increased. In addition, other neural cell markers, such as GFAP and O4, were increased. These results suggest that hUC-MSCs differentiated into neural cells upon SSV nonselectively. In a mechanism study, the ERK level increased in a time-dependent manner upon SSV for 12 h.

Significance

The results of this study suggest that SSV caused hUC-MSCs to differentiate into neural cells via ERK activation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700