Tribological behaviour of titanium carbide/amorphous carbon nanocomposite coatings: From macro to the micro-scale
详细信息查看全文 | 推荐本文 |
摘要
The tribological behaviour of nanocomposite coatings made of nanocrystalline metal carbides and amorphous carbon (a-C) prepared by PVD/CVD techniques is found to be very dependant on the film deposition technique, synthesis conditions and testing parameters. Focusing in the TiC/amorphous carbon-based nanostructured system, this paper is devoted to an assessment of the factors governing the tribological performance of this family of nanocomposites using a series of TiC/a-C films prepared by magnetron sputtering technique varying the power applied to each target (titanium or graphite) as model system to establish correlations between film microstructure and chemical compositions and tribological properties measured by a pin-on-disk tribometer. The film microstructure goes from a quasi-polycrystalline TiC to a nanocomposite formed by nanocrystals of TiC embedded in an amorphous carbon matrix as observed by transmission electron microscopy (TEM). The nanocrystalline/amorphous ratio appears to be the key-parameter to control the tribological properties and its quantification has been done by electron energy-loss spectroscopy (EELS). A significant change in the tribological performance is observed for nanocomposites with amorphous carbon phase contents above 60–65%. The friction coefficient decreases from 0.3 to 0.1 and the film wear rates by a factor of 10. Examination of the wear scars on ball and film surfaces by laser micro-Raman spectroscopy has allowed to determine the presence of metallic oxides and carbonaceous compounds responsible of the observed friction behaviour. The revision of the literature results in view of the conclusions obtained enabled to explain their apparent dispersion in the tribological performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700