Patrolling security games: Definition and algorithms for solving large instances with single patroller and single intruder
详细信息查看全文 | 推荐本文 |
摘要
Security games are gaining significant interest in artificial intelligence. They are characterized by two players (a defender and an attacker) and by a set of targets the defender tries to protect from the attacker始s intrusions by committing to a strategy. To reach their goals, players use resources such as patrollers and intruders. Security games are Stackelberg games where the appropriate solution concept is the leader-follower equilibrium. Current algorithms for solving these games are applicable when the underlying game is in normal form (i.e., each player has a single decision node). In this paper, we define and study security games with an extensive-form infinite-horizon underlying game, where decision nodes are potentially infinite. We introduce a novel scenario where the attacker can undertake actions during the execution of the defender始s strategy. We call this new game class patrolling security games (PSGs), since its most prominent application is patrolling environments against intruders. We show that PSGs cannot be reduced to security games studied so far and we highlight their generality in tackling adversarial patrolling on arbitrary graphs. We then design algorithms to solve large instances with single patroller and single intruder.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700