High performance organic light emitting diodes using substoichiometric tungsten oxide as efficient hole injection layer
详细信息查看全文 | 推荐本文 |
摘要
In this work we demonstrate the unique hole injection and transport properties of a substoichiometric tungsten oxide with precise stoichiometry, in particular WO2.5, obtained after the controlled hydrogen reduction during growth of tungsten oxide, using a simple hot-wire vapor deposition technique. We present clear evidence that tungsten suboxide exhibits metallic character and that an almost zero hole injection barrier exists at the anode/polymer interface due to the formation/occupation of electronic gap states near the Fermi level after oxide鈥檚 reduction. These states greatly facilitate hole injection and charge generation/electron extraction enabling the demonstration of extremely efficient hole only devices. WO2.5 films exhibit metallic-like conductivity and, thus, can also enhance charge transport at both anode and cathode interfaces. Electroluminescent devices using WO2.5 as both, hole and electron injection layer, and poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1鈥?3}-thiadiazole)] (F8BT) as the emissive layer exhibited high efficiencies up to 7 cd/A and 4.5 lm/W, while, stability studies revealed that these devices were extremely stable, since they were operating without encapsulation in air for more than 700 h.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700