Model organic compounds differ in priming effects on alkalinity release in soils through carbon and nitrogen mineralisation
详细信息查看全文 | 推荐本文 |
摘要
The influence of organic matter and its cycling on soil pH change is still unclear. This study investigated the effect of organic compounds on carbon and nitrogen dynamics and their relationship with pH changes in two soils differing in initial soil pH (Podosol of pH 4.5 and Tenosol of pH 6.2). Seven organic compounds representing common compounds in decomposing plant residues or root exudates were added to the soils and incubated for 60 d. The largest cumulative soil respiration occurred when glucose, malic acid and citric acid were added. In addition, the Tenosol had the greater respiration compared to the Podosol. The addition of organic acids (acetic, malic, citric, ferulic and benzoic acid) instantly decreased soil pH due to the dissociation of H+ from the acids. The pH of both soils was then restored over time, which was positively correlated with decomposition%of these compounds. The pH of the Tenosol amended with all the organic acids and of the Podosol with malic acid exceeded that of the control, and net聽alkalization occurred, with the degree of alkalization being greater with malic and citric acid. Adding organic acids to the Tenosol generally increased NH4 concentrations but decreased NO3 concentrations. The addition of glucose decreased pH in Podosol but slightly increased it in the Tenosol. The addition of glucosamine hydrochloride decreased pH due to significant nitrification. The results suggest that the addition of organic acids stimulates microbial NO3 uptake, and ammonification and decomposition of indigenous soil organic matter, resulting in a priming effect on alkalinity release, and that the degree of the priming effect is influenced by the type of organic acid and initial soil pH.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700