Impact of the sintering temperature on the structural, magnetic and electrical transport properties of doped La0,67Ba0,33Mn0,9Cr0,1O3 manganite
详细信息查看全文 | 推荐本文 |
摘要
A systematic investigation of the La0,67Ba0,33Mn0,9Cr0,1O3 perovskite has been undertaken, mainly to understand the impact of the sintering temperature on the structural, microstructural, magnetic and electrical transport properties in these materials. The La0,67Ba0,33Mn0,9Cr0,1O3 manganite was sintered by a solid-state route at 1000 掳C, 1200 掳C and 1400 掳C. The X-ray diffraction studies show that all samples crystallize with the rombohedral symmetry within the space group RC, regardless of the sintering temperatures employed in this work. The Mn顥窸顥窶n bond angle decreases and the Mn顥窸 bond length increases with the increase of the grain size. All samples undergo a paramagnetic (PM)-ferromagnetic (FM) phase transition at T=TC. Both the magnetization and the Curie temperature TC decrease with increasing grain size mainly due to the increase of the Mn顥窸 bond length dMn顥窸. The electrical resistivity () increases with decreasing grain size because of the enhancement of the grain boundary effect. Low temperature resistivity data below TC was fitted by the relation =0+2T2+4.5T4.5, indicating the importance of the grain/domain boundary, the electron-electron scattering effects and, to a lesser extent, the electron-(magnon,phonon) scattering effects in the mechanism of conduction. On the other hand, the high temperature resistivity above the metal-insulator (M-I) transition Tp for the sample sintered at 1000 掳C was explained using variable range hopping (VRH) and small polaron hopping (SPH) models. IR studies revealed that the vibration mode at 411 cm鈭?, associated with the internal bending of MnO6 octahedra, becomes softer, indicating an increase of the distortion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700