Tool path optimization for single point incremental sheet forming using response surface method
详细信息查看全文 | 推荐本文 |
摘要
Incremental sheet forming (ISF) process is based on localized plastic deformation in a thin sheet metal blank. It consists to deform progressively and locally the sheet metal using spherical forming tool controlled by a CNC machine-tool. Although it is a slow process compared to conventional forming technique such as stamping. The cost reduction linked to the fact that punches and dies are avoided which makes it a very attractive process for small batch production and rapid prototyping. However, ISF process depends strongly on the forming tool path which influences greatly the part geometry and sheet thickness distribution. A homogeneous thickness distribution requires a rigorous optimization of the parameter settings, and an optimal parameterization of the forming strategy. This paper shows an optimization procedure tested for a given forming strategy, in order to reduce the manufacturing time and homogenize thickness distribution of an asymmetric part. The optimal forming strategy was determined by finite element analyses (FEA) in combination with response surface method (RMS) and sequential quadratic programming (SQP) algorithm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700