Critical mass of bacterial populations and critical temperature of self-gravitating Brownian particles in two dimensions
详细信息查看全文 | 推荐本文 |
摘要
We show that the critical mass Mc=8π of bacterial populations in two dimensions in the chemotactic problem is the counterpart of the critical temperature Tc=GMm/4kB of self-gravitating Brownian particles in two-dimensional gravity. We obtain these critical values by using the Virial theorem or by considering stationary solutions of the Keller–Segel model and Smoluchowski–Poisson system. We also consider the case of one-dimensional systems and develop the connection with the Burgers equation. Finally, we discuss the evolution of the system as a function of M or T in bounded and unbounded domains in dimensions d=1, 2 and 3 and show the specificities of each dimension. This paper aims to point out the numerous analogies between bacterial populations, self-gravitating Brownian particles and, occasionally, two-dimensional vortices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700