Effects of heat treatments on the microstructures and mechanical properties of Mg–3Nd–0.2Zn–0.4Zr (wt.%) alloy
详细信息查看全文 | 推荐本文 |
摘要
Microstructure and mechanical properties of as-cast and different heat treated Mg–3Nd–0.2Zn–0.4Zr (wt.%) (NZ30K) alloys were investigated. The as-cast alloy was comprised of greek small letter alpha magnesium matrix and Mg12Nd eutectic compounds. After solution treatment at 540 °C for 6 h, the eutectic compounds dissolved into the matrix and small Zr-containing particles precipitated at grain interiors. Further aging at low temperatures led to plate-shaped metastable precipitates, which strengthened the alloy. Peak-aged at 200 °C for 10–16 h, fine β″ particles with DO19 structure was the dominant strengthening phase. The alloy had ultimate tensile strength (UTS) and elongation of 300–305 MPa and 11%, respectively. Aged at 250 °C for 10 h, coarse β′ particles with fcc structure was the dominant strengthening phase. The alloy showed UTS and elongation of 265 MPa and 20%, respectively. Yield strengths (YS) of these two aged conditions were in the same level, about 140 MPa. Precipitation strengthening was the largest contributor (about 60%) to the strength in these two aged conditions. The hardness of aged NZ30K alloy seemed to correspond to UTS not YS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700