Continuous synthesis of l-malic acid using whole-cell microreactor
详细信息查看全文 | 推荐本文 |
摘要
Although whole-cell biocatalysis, as well as microreactor technology, are gaining importance in modern biotechnology, there are just a few literature reports on whole-cell biocatalysis in microreactors. In the present work, a continuously operated microreactor with permeabilized Saccharomyces cerevisiae cells was made out of commercially available plastic tubes and tested as a tool for the development of l-malic acid production accomplished by hydration of fumaric acid. Cells were immobilized on inner walls of microchannels by means of 3-aminopropyltriethoxysilane and glutaraldehyde and further permeabilized in order to enhance mass transfer across the membrane. The effects of different process parameters including medium pH, substrate inlet concentration and flow rate, cell permeabilization conditions, as well as catalyst stability were evaluated and the results compared to previously published data obtained within a bench-scale bioreactor. The presented microfluidic device with immobilized biocatalyst built from low cost and disposable materials could be applied for the fast development of other whole-cell biotransformations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700