Electrode polarization measurements in the FeSrCe0.95Yb0.05O2.975Au proton conducting solid electrolyte cell
详细信息查看全文 | 推荐本文 |
摘要
The effect of hydrogen partial pressure (1.3–5.8 kPa) and cell temperature (600–800 °C) on the kinetics and mechanism of the charge transfer electrode reaction taking place at the three phase boundary H2–Fe–SCY (SCY = SrCe0.95Yb0.05O2.975), was thoroughly examined by performing electrode polarization measurements. A three electrode single chamber proton conducting solid electrolyte cell of the type Fe–SCY–Au, was used in order to conduct the electrode kinetic studies. The steady-state current–overpotential characteristics were analysed with the high field approximations of the Butler–Volmer equation, by taking into account the presence of limiting currents. Both, apparent exchange current density, Io, and anodic/cathodic charge transfer coefficients (αa / αc), were calculated. Limiting currents, Il, were observed in all reaction conditions. The apparent reaction order, q, was found in most cases, within experimental error, close to 0.5 suggesting a possible reaction model, where a competition exists between charge transfer and mass transport of hydrogen ad-atoms or protons along the electrode/solid electrolyte interface.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700