Thickness effects on the optical properties of layer-by-layer poly(p-phenylene vinylene) thin films and their use in energy-modulated structures
详细信息查看全文 | 推荐本文 |
摘要
Poly(p-phenylene vinylene) (PPV) thin films were produced by layer-by-layer (LbL) method, using soluble PPV-precursor and dodecylbenzenesulfonate salt (DBS). The amount of deposited layers strongly influences the optical properties of the thermally converted PPV film. The absorbance and luminescence spectra of ultra-thin films (consisting of only two or three PPV layers) are shifted to smaller wavelengths with respect to spectra of thicker films. This is related to the smaller average conjugation length of polymer chains, resulting in a higher HOMO-LUMO gap energy of the material. However, if a thick film is produced by repeating the deposition process and thermal conversion of ultra-thin layers, the optical spectra are still displaced to higher energies in comparison with those of thicker films produced by the conventional continuous deposition of layers. This result enabled the production of multilayered polymeric films with modulated energy profile, taking the number of deposited layers as the only variable in the manufacturing process of the structure. The aim is to guide the excitation to specific regions of the material through the F枚rster-type energy transfer processes. Such systems can be used at interfaces electrode/polymer and/or electrode/polymeric active layers in order to improve the performance of organic optoelectronic devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700