Effect of rubber on properties of nylon-6/unmodified clay/rubber nanocomposites
详细信息查看全文 | 推荐本文 |
摘要
Three nylon-6/unmodified clay/rubber nanocomposites with high toughness, high stiffness, high heat resistance and reduced flammability were studied in this paper, on basis of three compound powders of ultra-fine full-vulcanized powdered rubber (UFPR)/montmorillonite (UFPRM). It was found that all of the three UFPRs used in the study can help the silicate layers without organic treatment to be exfoliated in the nylon-6 matrix, despite some differences in compatibilities between them and nylon-6. Accordingly, the clay in different UFPRMs at the same loading content can lead to a similar improvement in stiffness and heat resistance of nanocomposites. In other words, UFPRs having different compatibilities with nylon-6 do not affect the stiffness and heat resistance of nanocomposites largely. However, the nylon-6 nanocomposites, modified with different UFPRMs, show different superior properties. Butadiene styrene vinyl-pyridine UFPRM (VP-UFPRM) is more effective in improving toughness of nylon-6. Nylon-6/silicone UFPRM (nylon-6/S-UFPRM) nanocomposite exhibits more reduced flammability, good flowability and high thermal stability. As for nylon-6/acrylate UFPRM (nylon-6/A-UFPRM) nanocomposite, it shows high toughness and thermal stability. Furthermore, the mechanism of unmodified clay exfoliation during the melt compounding and the effect of different UFPRs on the properties of the nylon-6/UFPRM nanocomposites are also discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700