Computational phase equilibria and experimental investigation of magnesium-aluminum-calcium alloys
详细信息查看全文 | 推荐本文 |
摘要
Mg-Al-Ca alloys provide excellent creep resistance and castability for elevated temperature applications. Computational thermodynamics calculations and experimental investigation of the Mg-Al-Ca ternary system have validated the earlier development of creep-resistant AX52 (Mg-5Al-2Ca) and AX53 (Mg-5Al-3Ca) alloys. The Scheil simulation of alloy solidification has suggested key guidelines of alloy composition design in promoting the thermally stable (Mg,Al)2Ca phase, while replacing the less stable Mg17Al12 in the microstructure. The suppression of the Mg17Al12 phase can increase the solidus temperature, reduce the freezing range, and increase the latent heat during solidification, all of which contribute to improved castability in the AX53 and AX52 alloys compared with the AX51 (Mg-5Al-1Ca) alloy. The quantitative phase equilibrium data, microstructure characterization, as well as the thermal physical properties of the Mg-Al-Ca alloy system generated from this study are important basis for further optimization of alloy composition and microstructure for elevated temperature applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700