A comparison of the oxidation behavior of CrN films deposited using continuous dc, pulsed dc and modulated pulsed power magnetron sputtering
详细信息查看全文 | 推荐本文 |
摘要
The study is aimed at comparing the oxidation behavior of the stoichiometric CrN films deposited by continuous dc magnetron sputtering (dcMS), mid-frequency pulsed dc magnetron sputtering (PMS), and modulated pulsed power (MPP) magnetron sputtering techniques in a closed field unbalanced magnetron sputtering system. These as-deposited CrN films exhibited a cubic structure and similar stoichiometric compositions, but with different microstructures and residual stresses. After annealing in the ambient air from 600 to 1000 掳C, the changes in the crystal phase, microstructure, and hardness of the films were characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy line scan, and nanoindentation. The oxidation activation energies of the films were calculated using Arrhenius equation. It was found that the MPP CrN film exhibited superior oxidation resistance than dcMS and PMS CrN films. After annealing at 900 掳C, the MPP CrN film exhibited an extremely dense structure and the cubic phase was well maintained. On the other hand, the dcMS and PMS CrN films were severely oxidized into a porous structure with the development of 尾-Cr2N and Cr2O3 phases and a rapid degradation of the cubic phase after 700 and 800 掳C, respectively. The results indicate that all films showed a parabolic oxidation rate below 900 掳C. The oxidation activation energies for the dcMS, PMS and MPP CrN films are 116 kJ/mol, 141 kJ/mol, and 195 kJ/mol, respectively. The better oxidation resistance of the MPP CrN film is attributed to its dense microstructure and low residual stress.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700