Theoretical study of the radiationless deactivation mechanisms of photo-excited thiophene
详细信息查看全文 | 推荐本文 |
摘要
The radiationless deactivation mechanisms of photo-excited thiophene have been studied using the multi-reference second-order perturbation theory and linear response coupled cluster methods. The electronic spectrum has been established and various minimum energy structures and conical intersections involving the ground and lowest singlet excited states have been characterized. Simplified reaction paths connecting the optimized geometries have been calculated as well. Based on these investigations, several deactivation mechanisms have been identified leading from the lowest bright 1蟺蟺鈭?/sup> states back to the electronic ground state. The excited state depletion in each case is possible due to the existence of low-lying conical intersections formed by either cleavage of one of the CS bonds or out-of-plane deformations of the aromatic ring. The deactivation mechanisms suggested in this work should provide some very efficient decay channels after excitation into the first UV absorption band of thiophene, and are good candidates to explain why this compound is non-fluorescent.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700