Staging of the Fischer-Tropsch reactor with an iron based catalyst
详细信息查看全文 | 推荐本文 |
摘要
The Fischer-Tropsch reactor is sectioned into stages based on the systematic method given by . The design functions are optimized to maximize the concentration of C11+ at the end of reactor path. The decision variables are fluid mixing, hydrogen distribution, heat transfer area distribution, coolant temperature, and catalyst concentration. With the path temperature constrained by 250 掳C, staging of the reactor will increase the concentration of C11+. For a three-stage reactor, the concentration is increased by 2.50%compared to a single-stage reactor. The optimal mixing structure is plug flow to have the maximum possible conversion. A case study is conducted to separate and distribute hydrogen along the reactor path. This will reduce H2/CO at the beginning of the path and increase chain growth probability. The results show that for a three-stage reactor, the concentration of C11+ is increased by 15.93%compared to single-stage reactor.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700