Experimental tests of stereological estimates of grain boundary populations
详细信息查看全文 | 推荐本文 |
摘要
We present experimental validation of a method for estimating three-dimensional (3-D) relative numerical populations of grain boundaries from measurements of individual two-dimensional (2-D) cross-sections. Such numerical populations are relevant to network topology and the modeling of intergranular failure modes in grain boundary engineered materials, and are distinct from geometrical population measures such as area per volume. We examine 3-D reconstructions of stainless steel and copper, with varying populations of twin-related boundaries, generated by serial-section electron backscatter diffraction and high-energy X-ray diffraction microscopy. We show that 2-D length fractions, 2-D number fractions and 3-D number fractions are all distinct quantities when grain boundary type is correlated with grain boundary size. We also demonstrate that the last quantity may be reliably inferred from the first two, provided the experimental spatial resolution is much finer than the grain size, eliminating the need to use 3-D experimental methods to access at least some information about 3-D network properties. Many of the 危3 boundaries are extremely complex, with highly re-entrant shapes that can intersect a sample plane many times, giving a false impression of multiple separate boundaries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700