Binding of quinidine radically increases the stability and decreases the flexibility of the cytochrome P450 2D6 active site
详细信息查看全文 | 推荐本文 |
摘要
Human cytochrome P450 2D6 (CYP2D6) is an enzyme of the CYP superfamily responsible for biotransformation of about 20%of drugs of known metabolism containing a basic nitrogen and a planar aromatic ring. Here, we present a combined experimental and computational study on the compressibility and flexibility of unliganded and quinidine-bound CYP2D6. Experimentally, high-pressure induced Soret band shifts of the enzyme were measured by UV/VIS spectroscopy, while 100 ns all atomic molecular dynamics (MD) simulations in explicit water were used in the computational analysis. We identified sharp differences between ligand-free and quinidine-bound CYP2D6 forms in compressibility, flexibility parameters and active site solvation. While the unliganded CYP2D6 is compressible, quinidine binding significantly rigidifies the CYP2D6 active site. In addition, MD simulations show that quinidine binding results in pronounced reductions in active site flexibility and solvation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700