A three-stage resilience analysis framework for urban infrastructure systems
详细信息查看全文 | 推荐本文 |
摘要
This paper proposes a new multi-stage framework to analyze infrastructure resilience. For each stage, a series of resilience-based improvement strategies are highlighted and appropriate correlates of resilience identified, to then be combined for establishing an expected annual resilience metric adequate for both single hazards and concurrent multiple hazard types. Taking the power transmission grid in Harris County, Texas, USA, as a case study, this paper compares an original power grid model with several hypothetical resilience-improved models to quantify their effectiveness at different stages of their response evolution to random hazards and hurricane hazards. Results show that the expected annual resilience is mainly compromised by random hazards due to their higher frequency of occurrence relative to hurricane hazards. In addition, under limited resources, recovery sequences play a crucial role in resilience improvement, while under sufficient availability of resources, deploying redundancy, hardening critical components and ensuring rapid recovery are all effective responses regardless of their ordering. The expected annual resilience of the power grid with all three stage improvements increases 0.034%compared to the original grid. Although the improvement is small in absolute magnitude due to the high reliability of real power grids, it can still save millions of dollars per year as assessed by energy experts. This framework can provide insights to design, maintain, and retrofit resilient infrastructure systems in practice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700