An inexpensive estimate of failure probability for high-dimensional systems with uncertainty
详细信息查看全文 | 推荐本文 |
摘要
The failure probability of a system at an uncertain state can be estimated within a precise confidence interval using the Monte-Carlo sampling technique. Using this approach, the number of system parameters may be arbitrarily large, and the system may be non-linear and subject to random noise. For a given confidence level and interval, the number of required simulations can be exactly computed using the Beta Distribution. When failure probabilities are on the order of 1-10%, this technique becomes very inexpensive. In particular, 100 simulations are always sufficient for a failure estimate with a confidence interval of +/鈭?0%at a 95%confidence level.

In an engineering development process, this estimate limits the number of trials required to assess the robustness or reliability of high-dimensional and non-linear systems. When simulations are expensive, for example in vehicle crash development, using such a rule to minimize the number of trials can greatly reduce the expense and time invested in development.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700