用户名: 密码: 验证码:
Reorganization of cellular retinol-binding protein type 1 and lecithin:retinol acyltransferase during retinyl ester biosynthesis
详细信息查看全文 | 推荐本文 |
摘要

Background

Cellular retinol-binding protein, type 1 (Crbp1), chaperones retinyl ester (RE) biosynthesis catalyzed by lecithin:retinol acyltransferase (LRAT).

Methods

We monitored the subcellular loci of LRAT and Crbp1 before and during RE biosynthesis, and compared the results to diacylglycerol:acyltransferase type 2 (DGAT2) during triacylglycerol biosynthesis in three cell lines: COS7, CHO and HepG2.

Results

Before initiation of RE biosynthesis, LRAT distributed throughout the endoplasmic reticulum (ER), similar to DGAT2, and Crpb1 localized with mitochondria associated membranes (MAM), surrounded by LRAT. Upon initiating RE biosynthesis in cells transfected with low amounts of vector to simulate physiological expression levels, Crpb1 remained with MAM, and both Crbp1 and MAM re-localized with LRAT. LRAT formed rings around the growing lipid droplets. LRAT activity was higher in these rings relative to the general ER. LRAT-containing rings colocalized with the lipid-droplet surface proteins, desnutrin/adipose triglyceride lipase and perilipin 2. Colocalization with lipid droplets required the 38 N-terminal amino acid residues of LRAT, and specifically K36 and R38. Formation of rings around the growing lipid droplets did not require functional microtubules.

General significance

These data indicate a relationship between LRAT and Crbp1 during RE biosynthesis in which MAM-associated Crpb1 and LRAT colocalize, and both surround the growing RE-containing lipid droplet. The N-terminus of LRAT, especially K36 and R38, is essential to colocalization with the lipid droplet.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700