Numerical simulation of laminar flow of water-based magneto-rheological fluids in microtubes with wall roughness effect
详细信息查看全文 | 推荐本文 |
摘要
Fully developed laminar flows of water-based magneto-rheological (MR) fluids in microtubes at various Reynolds and Hedsrom numbers have been numerically simulated using finite difference method. The Bingham plastic constitutive model has been used to represent the flow behavior of MR fluids. The combined effects of wall roughness and shear yield stress on the flow characteristics of MR fluids, which are considered to be homogeneous by assuming the small particles with low concentration in the water, through microtubes have been numerically investigated. The effect of wall roughness on the flow behavior has been taken into account by incorporating a roughness–viscosity model based on the variation of the MR fluid apparent viscosity across the tube. Significant departures from the conventional laminar flow theory have been acquired for the microtube flows considered.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700