Parametric study of nonlinear adaptive control algorithm with magneto-rheological suspension systems
详细信息查看全文 | 推荐本文 |
摘要
This paper describes the details of the simulation analysis of a nonlinear model-based adaptive suspension control system [Song X, Ahmadian M, Southward SC, Miller LR. An adaptive semiactive control algorithm for magneto-rheological suspension systems. ASME J Vibr Acoust, in press; Song X. Design of adaptive vibration control systems with application of magneto-rheological dampers. Dissertation, Virginia Tech, December, 1999]. The numerical aspect of the simulation study of a seat suspension with application of magneto-rheological dampers will be presented. Magneto-rheological (MR) dampers have strong nonlinearities such as bi-linearity, hysteresis, and saturation related to magnetism, which can be represented by appropriate mathematic functions, respectively. Thus the model-based adaptive algorithm becomes complicated because of involvement of MR damper models. One objective of this study is to investigate the effect of MR damper model simplifications on the adaptive suspension performance. Furthermore, simulation is also applied to do parametric study of adaptive algorithm parameters such as filtering and step size. The numerical results compare the proposed adaptive controller with passive dampers to validate not only its effectiveness but also obtain some guidance information for its experimental implementation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700