Locking-free Reissner–Mindlin elements without reduced integration
详细信息查看全文 | 推荐本文 |
摘要
In a recent paper of Arnold et al. [D.N. Arnold, F. Brezzi, L.D. Marini, A family of discontinuous Galerkin finite elements for the Reissner–Mindlin plate, J. Sci. Comput. 22 (2005) 25–45], the ideas of discontinuous Galerkin methods were used to obtain and analyze two new families of locking free finite element methods for the approximation of the Reissner–Mindlin plate problem. By following their basic approach, but making different choices of finite element spaces, we develop and analyze other families of locking free finite elements that eliminate the need for the introduction of a reduction operator, which has been a central feature of many locking-free methods. For kgreater-or-equal, slanted2, all the methods use piecewise polynomials of degree k to approximate the transverse displacement and (possibly subsets) of piecewise polynomials of degree k − 1 to approximate both the rotation and shear stress vectors. The approximation spaces for the rotation and the shear stress are always identical. The methods vary in the amount of interelement continuity required. In terms of smallest number of degrees of freedom, the simplest method approximates the transverse displacement with continuous, piecewise quadratics and both the rotation and shear stress with rotated linear Brezzi–Douglas–Marini elements.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700