Preface
详细信息查看全文 | 推荐本文 |
摘要
In this paper we summarize the elements of a numerical integration scheme for elasto-plastic response of single crystals. This is intended to be compatible with large-scale explicit finite element codes and therefore can be used for problems involving multiple crystals and also overall behavior of polycrystalline materials. The steps described here are general for anisotropic elastic and plastic response of crystals. The crystallographic axes of the lattice are explicitly stored and updated at each time step. A plastic predictor–elastic corrector scheme is used to calculate the plastic strain rates on all active slip systems based on a rate-dependent physics-based constitutive model without the need of further auxiliary assumptions. Finally we present the results of numerous calculations using a physics-based rate- and temperature-dependent model of copper and the effect of elastic unloading, elastic crystal anisotropy, and deformation-induced lattice rotation are emphasized.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700