Testing the ability of various equations of state to reproduce high-pressure isotherm crossings in the (伪, P) plane
详细信息查看全文 | 推荐本文 |
摘要
This paper focuses on a singularity exhibited by most dense fluids in the (, P) plane (where denotes the isobaric expansivity and P, the pressure): for a given fluid, nearly all isothermal curves share a common intersection point. In this paper, we test the capacity of a series of equations of state to model this little-known phenomenon. Equations of state that can be written as the sum of an attractive and a repulsive term are first considered. As a result, equations of state involving a Carnahan-Starling repulsive term always predict the aforementioned crossing point contrary to equations of state involving a classical Van der Waals repulsive term. Quantitatively, the Carnahan-Starling-Van der Waals (CS-VdW) equation of state and the Carnahan-Starling-Soave-Redlich-Kwong (CS-SRK) equation of state both lead to satisfactory results. In addition, some pitfalls of the Carnahan-Starling-Peng-Robinson (CS-PR) equation of state are identified which justifies that this model cannot represent dense-fluid behaviors. The Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state is then tested. The obtained results are more extremely satisfactory when compared to the CS-vdW equation of state. Finally, a general criterion that must be verified by equations of state in order to predict isotherm crossings is proposed and illustrated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700