Stratigraphy and geochemical characterization of the Oligocene–Miocene Maikop series: Implications for the paleogeography of Eastern Azerbaijan
详细信息查看全文 | 推荐本文 |
摘要
The Oligocene–Miocene Maikop Series is a world-class source rock responsible for much of the oil and gas found in the South Caspian Basin. It is composed of up to 3 km of marine mudstone, and contains a nearly continuous record of deposition during progressive tectonic closure of the basin as the Arabian Peninsula converged northward into Eurasia. Historically, the stratigraphy of this interval has been difficult to define due to the homogenous nature of the fine-grained, clay-dominated strata. Outcrop exposures in eastern Azerbaijan allow direct observation and detailed sampling of the interval, yielding a more comprehensive stratigraphic context and a more advanced understanding of syndepositional conditions in the eastern Paratethys Sea. Specifically, the present investigation reveals that coupling field-based stratigraphic characterization with geochemical analyses (e.g., bulk elemental geochemistry, Rock-Eval pyrolysis, bulk stable isotope geochemistry) yields a more robust understanding of internal variations within the Maikop Series. Samples from seven sections located within the Shemakha–Gobustan oil province reveal consistent stratigraphic and spatial geochemical trends. It is proposed that the Maikop Series be divided into three members based on these data along with lithostratigraphic and biostratigraphic data reported herein. When comparing Rupelian (Early Oligocene) and Chattian (Late Oligocene) strata, the Rupelian-age strata commonly possess higher TOC values, more negative δ15Ntot values, more positive δ13Corg values, and higher radioactivity relative to Chattian-age rocks. The trace metals Mo and V (normalized to Al) are positively correlated with TOC, with maximum values occurring at the Rupelian–Chattian boundary and overall higher average values in the Rupelian. Across the Oligocene–Miocene boundary, a slight drop in V/Al, Mo/Al ratios is observed, along with drops in%S and TOC. These results indicate that geochemical signatures of the Maikop Series are regional in nature, and furthermore that analogous fine-grained sections may be better characterized and subdivided using similar techniques. In general, geochemical indicators suggest that the basin was in limited communication with the Tethys Sea throughout the Oligocene–Early Miocene, with suboxic to anoxic conditions present during the Oligocene and to a lesser extent in the Miocene. This increased isolation was likely due to tectonic uplift to both the south and north of the study area, and greatly enhanced by global sea-level fluctuations. These data serve as the basis for a more detailed understanding of the tectonic evolution of the region, and support a standardized chemostratigraphic division of the important petroleum source interval.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700