The mechanism of anti-platelet activity of davallialactone: Involvement of intracellular calcium ions, extracellular signal-regulated kinase 2 and p38 mitogen-activated protein kinase
详细信息查看全文 | 推荐本文 |
摘要
This study was designed to investigate the effect of davallialactone, which was isolated from the mushroom Inonotus xeranticus, on platelet aggregation induced by collagen, thrombin and ADP. We found that davallialactone dose-dependently inhibited platelet aggregation that was stimulated either by collagen (2.5 µg/ml), a potent ligand of integrin greek small letter alpha2β1 and glycoprotein VI, or by thrombin (0.1U/ml), a potent agonist of the protease-activated receptors (PARs) PAR1 and PAR3. In addition, davallialactone inhibited platelet aggregation induced by ADP, an agonist of P2Y receptor. To understand the mechanism of anti-platelet activity, we determined whether davallialactone affected the downstream signaling in collagen-activated platelets. Using the fura-2/AM fluorometric assay, we found that davallialactone dose-dependently inhibited intracellular calcium concentration levels ([Ca2+]i). Moreover, davallialactone inhibited the phosphorylation of extracellular signal-regulated protein kinase (ERK)-2 and p38 mitogen-activated protein kinase (MAPK), in a dose-dependent manner. The tyrosine phosphorylation of 60 and 85kDa proteins, which were activated by collagen, were differentially inhibited by davallialactone. Taken together, these data suggest that davallialactone may have potential anti-platelet aggregation activity via suppression of intracellular downstream signaling pathways.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700