Dopant segregation in SOI Schottky-barrier MOSFETs
详细信息查看全文 | 推荐本文 |
摘要
We present experimental results on silicon-on-insulator Schottky-barrier MOSFETs with fully silicided NiSi source and drain contacts. Dopant segregation during silicidation was used to improve the device characteristics: on-currents, significantly higher than without dopant segregation as well as an almost ideal off-state are demonstrated in n-type as well as p-type SB-MOSFETs. Temperature dependent measurements show that the effective Schottky-barrier height in devices with segregation can be strongly lowered. In addition, we investigate the dopant segregation technique with simulations. Comparing simulations with experiments it turns out that the spatial extend of the segregation layer is on the few nanometer scale which is necessary for ultimately scaled devices. Furthermore, the use of ultrathin-body SOI in combination with ultrathin gate oxides results in an even further increased transmission through the Schottky barriers and consequently leads to strongly improved device characteristics. As a result, the dopant segregation technique greatly relaxes the requirement of low Schottky-barrier silicides for high performance transistor devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700