Nanostructure of atmospheric soot particles
详细信息查看全文 | 推荐本文 |
摘要
We studied the structure of atmospheric soot using electron-diffraction-based pair distribution function (PDF) analysis, and compared it with other carbon structures. Two reference materials were used: hydrogen-free amorphous carbon and a kerogen sample with a H/C ratio of 0.61. First-neighbour atomic distances in atmospheric soot are as small as 0.134 nm, much shorter than in graphite (0.142 nm) or in amorphous carbon (0.141–143 nm), but larger than the typical value (0.131–0.132 nm) for kerogen. These results suggest that a high molar ratio of hydrogen is present in soot in small-sized aromatic clusters. Such aromatic components can strongly influence the optical properties of soot particles. We found that the quantitative electron diffraction method is an independent and efficient alternative to the commonly used spectroscopic methods for the analysis of the atomic structure of individual soot particles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700