Sulfated oxysterol, 25HC3S, is a potent regulator of lipid metabolism in human hepatocytes
详细信息查看全文 | 推荐本文 |
摘要
Recently, a novel oxysterol, 5-cholesten-3β, 25-diol 3-sulfate (25HC3S) was identified in primary rat hepatocytes following overexpression of the cholesterol transport protein, StarD1. This oxysterol was also detected in human liver nuclei. In the present study, 25HC3S was chemically synthesized. Addition of 25HC3S (6 μM) to human hepatocytes markedly inhibited cholesterol biosynthesis. Quantitative RT-PCR and Western blot analysis showed that 25HC3S markedly decreased HMG-CoA reductase mRNA and protein levels. Coincidently, 25HC3S inhibited the activation of sterol regulatory element binding proteins (SREBPs), suggesting that inhibition of cholesterol biosynthesis occurred via blocking SREBP-1 activation, and subsequently by inhibiting the expression of HMG CoA reductase. 25HC3S also decreased SREBP-1 mRNA levels and inhibited the expression of target genes encoding acetyl CoA carboxylase-1 (ACC-1) and fatty acid synthase (FAS). In contrast, 25-hydroxycholesterol increased SREBP1 and FAS mRNA levels in primary human hepatocytes. The results imply that 25HC3S is a potent regulator of SREBP mediated lipid metabolism.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700