Stability of small chemical groups on hexagonal-SiC(0001) surfaces: A theoretical study
详细信息查看全文 | 推荐本文 |
摘要
Density functional theory (DFT) calculations are used to investigate the stability on SiC(0001) surfaces of different chemical groups -NH2, -NO2, -CH3, -OH, -SH and -CN. The adsorption stability decreases in the order -NO2 > 鈭?#xA0;OH > 鈭?#xA0;NH2 > 鈭?#xA0;SH > 鈭?#xA0;CN > 鈭?#xA0;CH3. The stability of the single molecule-substrate bond is strongly influenced by the polarizability, which in turn depends on different parameters such as the electronegativity, atomic size and chemical environment. In a further step, methyl (鈭?#xA0;ACH3) and phenyl (鈭?#xA0;AC6H5) substituted groups are also considered and similar behaviour is observed. The inductive effect of the -CH3 or -C6H5 groups modifies the polarization of the Si adatom-molecule bond and the steric hindrance due to their size influences the molecular orientation. These two parameters affect the calculated adsorption energy, and are more important for -C6H5 substituent. This study provides clear tendencies that can be applied to more complex systems. Comparison of the adsorption of two large molecules, H2Pc (metal-free phthalocyanine) and PTCDI (perylene tetracarboxylic diimide) on the SiC(0001) surface is presented as an example.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700