Improving static stiffness of the parallel manipulator using inverse singularities
详细信息查看全文 | 推荐本文 |
摘要
The accuracy of parallel manipulators is linked to their stiffness and this has been shown to be configuration dependent. Indeed, certain types of singular configurations are usually avoided because of the associated loss of stiffness. These undesirable singularities are direct singularities, in which actuators cannot balance external loads. By contrast, inverse singularities do not cause this loss of stiffness. With appropriate design, the manipulator can be operated in a workspace with no direct singularities but which does contain some inverse ones. In this paper, a methodology for calculating the stiffness matrix of parallel manipulators is presented. Applied to the manipulator, it is demonstrated that inverse singularities are much stiffer than non-singular configurations. In addition, an approach to motion planning is devised which makes use of inverse singularities to obtain stiffer trajectories. Results show a significant improvement in the stiffness along the trajectory.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700