Centrality-based power control for hot-spot mitigation in multi-hop wireless networks
详细信息查看全文 | 推荐本文 |
摘要
When shortest path routing is employed in large scale multi-hop wireless networks such as sensor networks, nodes located near the center of the network have to perform disproportionate amount of relaying for others. Nodes in such traffic hot-spots deplete their batteries faster than others due to their high relay load. These traffic hot-spots also adversely affect the network capacity due to increased congestion in the regions. To solve the problem, various divergent routing schemes are used which route the data on center-avoiding divergent routing paths. Though they achieve better load balancing, overall relaying is increased significantly due to their longer routing paths. In this paper, we propose power control as a way for balancing relay load and mitigating hot-spots in wireless sensor networks. Using a heuristic based on the concept of centrality, we show that if we increase the power levels of only the nodes which are expected to relay more packets, significant relay load balancing can be achieved even with shortest path routing. Different from divergent routing schemes, such load balancing strategy is applicable to any arbitrary topology and traffic pattern. With extensive simulations, we show that centrality based power control can drastically increase the network lifetime of sensor networks. We compare its performance with other divergent routing schemes and multiple battery level assignment strategy. Also, it is shown that centrality based power control results into better throughput capacity in many different topologies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700