Double-skinned forward osmosis membranes based on layer-by-layer assembly鈥擣O performance and fouling behavior
详细信息查看全文 | 推荐本文 |
摘要
Novel crosslinked layer-by-layer (xLbL) forward osmosis (FO) membranes with a double-skinned design have been synthesized and characterized in the present work. Cross flow reverse osmosis test results showed that the membrane top skin generally had higher hydraulic resistance and better solute rejection compared to the bottom skin even when the same number of polyelectrolyte layers were deposited. The overall water permeability of the double-skinned FO membrane can be estimated from the respective values of the top and bottom skins using a resistance-in-series model. For FO tests performed at high feed solution (FS) concentration (0.5 M MgCl2), the water flux was not affected by the membrane separation properties nor its orientation. However, much higher FO water flux was obtained in the top-skin-facing-the-draw-solution (Top-DS) orientation compared to the alternative Top-FS orientation when the FS concentration was low. Using DI water as FS and 0.5 M MgCl2 as DS, FO water fluxes ranged from 40 to 80 L/m2 h in Top-DS and 鈭?0 L/m2 h in Top-FS. Higher DS concentrations resulted in greater FO water fluxes (e.g., 50-110 L/m2 h at 2 M MgCl2 DS). Fouling tests demonstrated that the double-skinned membrane had much better resistance against FO fouling in the Top-DS orientation. To the best knowledge of the authors, this is the first systematic study on the synthesis and characterization of double-skinned xLbL membranes. In addition, their superior anti-fouling ability was experimentally demonstrated for the first time.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700