High-order simulations of low Reynolds number membrane airfoils under prescribed motion
详细信息查看全文 | 推荐本文 |
摘要
The aerodynamics and aeroelastic response of a membrane wing under prescribed motion are investigated using a high-order, two-dimensional Navier-Stokes solver coupled to a geometrically nonlinear membrane model. The impact of increasing Reynolds number on the vortex dynamics and unsteady aerodynamic loads is examined for moderate-amplitude plunge and combined pitch-plunge motions at low frequency. Simulation results are compared with classical thin airfoil theory and highlight the differences between rigid and flexible membrane airfoils undergoing small and moderate amplitude motions. The present study demonstrates the ability of lifting membrane surface flexibility to enhance thrust production and propulsive efficiency, which may inform the design of flapping wing membrane fliers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700