On the rheology of dilative granular media: Bridging solid- and fluid-like behavior
详细信息查看全文 | 推荐本文 |
摘要
A new rate-dependent plasticity model for dilative granular media is presented, aiming to bridge the seemingly disparate solid- and fluid-like behavioral regimes. Up to date, solid-like behavior is typically tackled with rate-independent plasticity models emanating from Mohr-Coulomb and Critical State plasticity theory. On the other hand, the fluid-like behavior of granular media is typically treated using constitutive theories amenable to viscous flow, e.g., Bingham fluid. In our proposed model, the material strength is composed of a dilation part and a rate-dependent residual strength. The dilatancy strength plays a key role during solid-like behavior but vanishes in the fluid-like regime. The residual strength, which in a classical plasticity model is considered constant and rate-independent, is postulated to evolve with strain rate. The main appeal of the model is its simplicity and its ability to reconcile the classic plasticity and rheology camps. The applicability and capability of the model are demonstrated by numerical simulation of granular flow problems, as well as a classical shear banding problem, where the performance of the continuum model is compared to discrete particle simulations and physical experiment. These results shed much-needed light onto the mechanics and physics of granular media at various shear rates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700