In vivo performance of microstructured calcium phosphate formulated in novel water-free carriers
详细信息查看全文 | 推荐本文 |
摘要
Osteoinductive calcium phosphate (CaP) ceramics can be combined with polymeric carriers to make shapeable bone substitutes as an alternative to autologous bone; however, carriers containing water may degrade the ceramic surface microstructure, which is crucial to bone formation. In this study five novel tricalcium phosphate (TCP) formulations were designed from water-free polymeric binders and osteoinductive TCP granules of different particle sizes (500-1000 渭m for moldable putty forms, and 150-500 渭m for flowable paste forms). The performance of these novel TCP formulations was studied and compared with control TCP granules alone (both 150-500 and 500-1000 渭m). In vitro the five TCP formulations were characterized by their carrier dissolution times and TCP mineralization kinetic profiles in simulated body fluid. In vivo the formulations were implanted in the dorsal muscle and a unicortical femoral defect (脴 = 5 mm) of dogs for 12 weeks. The TCP formulation based on a xanthan gum-glycerol carrier exhibited fast carrier dissolution (1 h) and TCP mineralization (7 days) in vitro, but induced inflammation and showed little ectopic bone formation. This carrier chemistry was thus found to disrupt the early cellular response related to osteoinduction by microstructured TCP. TCP formulations based on carboxymethyl cellulose-glycerol and Polyoxyl 15-hydroxystearate-Pluronic庐 F127 allowed the in vitro surface mineralization of TCP by day 7 and produced the highest level of orthotopic bone bridging and ectopic bone formation, which was equivalent to the control. These results demonstrate that water-free carriers can preserve the chemistry, microstructure, and performance of osteoinductive CaP ceramics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700