Indole inhibition of ColE1 replication contributes to stable plasmid maintenance
详细信息查看全文 | 推荐本文 |
摘要
In the absence of active partitioning, strict control of plasmid copy number is required to minimise the possibility of plasmid loss at bacterial cell division. An important cause of multicopy plasmid instability is the formation of plasmid dimers by recombination and their subsequent proliferation by over-replication in a process known as the dimer catastrophe. This leads to the formation of dimer-only cells in which plasmid copy number is substantially lower than in cells containing only monomers, and which have a greatly increased probability of plasmid loss at division. The accumulation of dimers triggers the synthesis of the regulatory small RNA, Rcd, which stimulates tryptophanase and increases the production of indole. This, in turn, inhibits Escherichia coli cell division. The Rcd checkpoint hypothesis proposes that delaying cell division allows time for the relatively slow conversion of plasmid dimers to monomers by Xer-cer site-specific recombination. In the present work we have re-evaluated this hypothesis and concluded that a cell division block is insufficient to prevent the dimer catastrophe. Plasmid replication must also be inhibited. In vivo experiments have shown that indole, when added exogenously to a broth culture of E. coli does indeed stop plasmid replication as well as cell division. We have also shown that indole inhibits the activity of DNA gyrase in vitro and propose that this is the mechanism by which plasmid replication is blocked. The simultaneous effects of upon growth, cell division and DNA replication in E. coli suggest that indole acts as a true cell cycle regulator.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700