Ionic composition and transport mechanisms in microbial desalination cells
详细信息查看全文 | 推荐本文 |
摘要
Microbial desalination cell (MDC) offers a new and sustainable approach to desalinate saltwater by directly utilizing the electrical power generated by bacteria during organic matter oxidation. The successful MDC development relies on the fundamental understanding of the interactions and removal mechanisms of different ion species present in saline water or wastewater, but there is limited understanding of ion transport mechanisms in MDCs and potential membrane fouling/scaling during treatment of wastewater and saline water. In this study, we investigated the transport behavior of multiple ions in MDCs and the effects of ionic composition on system performance and membrane scaling and fouling. The results showed that the presence of sparingly soluble cations in saltwater negatively affected MDC power generation and desalination. Membrane characterization revealed that the majority of such ions precipitated on the ion exchange membrane surface and caused membrane scaling. Anions such as Br鈭?/sup> and SO42鈭?/sup> with Na+ as counter-ion did not show significant effects on system performance. Sharp pH changes were observed during MDC operation, which resulted in the inhibited MDC anode microbial activity and the accelerated formation of alkaline precipitations on both sides of the cation exchange membrane. An anode-cathode recirculation approach was proved to be effective to solve such problems and improved the desalination rate by 152%and the electron harvest rate by 98%.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700