Cortical sulci asymmetries in chimpanzees and macaques: A new look at an old idea
详细信息查看全文 | 推荐本文 |
摘要
Functional and neuroanatomical asymmetries are an important characteristic of the human brain. The evolution of such specializations in the human cortex has provoked great interest in primate brain evolution. Most research on cortical sulci has revolved around linear measurements, which represent only one dimension of sulci organization. Here, we used a software program (BrainVISA) to quantify asymmetries in cortical depth and surface area from magnetic resonance images in a sample of 127 chimpanzees and 49 macaques. Population brain asymmetries were determined from 11 sulci in chimpanzees and seven sulci in macaques. Sulci were taken from the frontal, temporal, parietal, and occipital lobes. Population-level asymmetries were evident in chimpanzees for several sulci, including the fronto-orbital, superior precentral, and sylvian fissure sulci. The macaque population did not reveal significant population-level asymmetries, except for surface area of the superior temporal sulcus. The overall results are discussed within the context of the evolution of higher order cognition and motor functions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700