Cellular energetic metabolism: physiological and pathological aspects
详细信息查看全文 | 推荐本文 |
摘要
Cellular homeostasis requires permanent energy production and consumption. Adenosine triphosphate (ATP) is the major energy component for the cell. Its synthesis occurs mainly in mitochondria where the oxidative phosphorylations realise the coupling between oxygen consumption and phosphorylation of adenosine diphosphate. The anaerobic production of ATP plays an important role in the intermediary metabolism. The enzymatic complexes of the mitochondrial respiratory chain are energy transducers acting as proton pumps. In cardiomyocytes, the phosphocreatine circuit allows a substrate channelling between mitochondria and myofibrils. This metabolic compartmentation explains the difficulties of studying energetic metabolism in the beating heart and the lack of correlation between cardiac function and the usual energy parameters. Mitochondria are a potential site of action of anaesthetic agents. Lipophilic local anaesthetics impair cellular energy metabolism and mitochondrial ATP production. Such effects could be associated with toxic effects of these molecules. NMR or near-infrared spectroscopy are non invasive techniques for monitoring energetic metabolism in vivo. Clinical applications are developed for analysing brain, muscle or cardiac function in physiological and pathological conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700