Predicting glass transition and crystallization temperatures of silicate bioglasses using mixture designs
详细信息查看全文 | 推荐本文 |
摘要
Mixture designs have been applied on bioglasses in the range 42-55%SiO2, 13.5-48%CaO, 10-35%Na2O, 0-5%P2O5, and 0-13.5%CaF2 (mol%). This study focused on glass transition temperature (Tg), crystallization temperature (Tc) and working range (temperature gap between Tg and Tc). The designs, elaborated from data obtained by Differential Thermal Analysis (DTA), consist of equations connecting the properties with the glass molar composition. Using this powerful mathematical method, Tg, Tc and the working range of bioglasses can be precisely predicted and optimized. We found that a Na, P or F addition decreases Tg. Crystallization occurs at higher temperature when phosphorus is added in small quantity, due to network polymerization, although further addition induces a decrease of Tc related to a decrease of the overall strength of the glass network. Fluoride affects crystallization of both manners, depending on the calcium and sodium contents. Last, as a network modifier, Na lowers Tc. The widest working ranges are obtained for glasses with a large quantity of SiO2, CaO, and P2O5 and a medium quantity of CaF2, allowing to reach a difference between Tc and Tg of up to 260 掳C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700