Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts
详细信息查看全文 | 推荐本文 |
摘要
We performed reaction experiments between partial melt of volatile-free MORB-eclogite and volatile-free fertile peridotite at 2.5-3 GPa, 1375 掳C and 1440 掳C. The fraction of added basaltic andesite melt was varied from ~ 8 to 50 wt.%. Melt was introduced either as a separate layer or mixed homogeneously with peridotite to simulate channelized and porous flow, respectively. Layered experiments produced a zone of orthopyroxene-rich garnet-websterite separating the reacted melt pool from a residual four phase lherzolite while mixed experiments produced a residual assemblage of orthopyroxene 卤 clinopyroxene 卤 olivine 卤 garnet co-existing with reacted melt where residual olivine was absent only in the experiments with 50 wt.%added melt. It is observed that the reacted melts display a continuous spectrum from tholeiitic to alkalic melts with increasing extent of wall-rock reaction for the layered runs and decreasing melt:rock ratio for the mixed experiments. The reacted melts at ~ 10-16 wt.%MgO match better with natural alkali basalts and basanite from intraplate ocean islands in terms of SiO2 (44-48 wt.%), TiO2 (2.2-4.1 wt.%), Al2O3 (12.6-14.3 wt.%), CaO (~ 8-11 wt.%), Na2O (~ 2-4 wt.%), and CaO/Al2O3 (0.52-0.81) as compared to partial melts of volatile-free peridotite and MORB-eclogite. FeO* content (~ 9-11 wt.%) of the reacted melts, however, remains poorer compared to most ocean island basalts (OIBs). We demonstrate that both alkalic and tholeiitic melts are produced in the process of MORB-eclogite partial melt and fertile peridotite reaction. We also demonstrate that near-primary alkali basalt can form at a temperature distinctly below the peridotite solidus and mantle potential temperature (TP) of ~ 1350 掳C may be sufficient to generate near-primary alkalic OIBs. Our study obviates the necessity for exotic lithologies, such as silica-deficient garnet pyroxenites, in the solid state mantle to explain the genesis of alkalic OIBs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700