Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur
详细信息查看全文 | 推荐本文 |
摘要
The objective of this experimental finite element (FE) study was to assess the accuracy of a simulation model estimate of the experimentally measured fracture load of the proximal femur in a sideways fall. Sixty-one formalin-fixed cadaver femora (41 female and 20 male) aged 55-100 years (an average of 80 years) were scanned with a multi-detector CT scanner and were mechanically tested for failure in a sideways fall loading configuration. Twenty-one of these femurs were used for training purposes, and 40 femurs were used for validation purposes. The training set FE models were used to establish the strain threshold for the element failure criteria. Bi-linear elastoplastic FE analysis was performed based on the CT images. The validation set was used to estimate the fracture loads. The Drucker-Prager criterion was applied to determine the yielding and the maximum principal stress criteria and the minimum principal strain criteria for element failure in tension and in compression, respectively. The estimated fracture load values were highly correlated with the experimental data (r = 0.931; p < 0.001). The slope was 0.929, with an intercept of 258 N, which was not significantly different from 1 and 0, respectively. The study shows that it is possible to estimate the fracture load with relatively high accuracy in a sideways fall configuration by using the CT-based FE method. This method may therefore be applied for studying the biomechanical mechanisms of hip fractures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700